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STATIONARY WAVES IN A HOMOGENEOUS MEDIUM PERTURBED BY AN INCLUSION 
IN THE FORM OF A CURVILINEAR ROD* 

S.K. KANAUN 

A three-dimensional homogeneous medium with an inclusion in the shape of 

a curvilinear rod is considered. Stationary fields of different kinds in 

such a medium can be represented in the form of asymptotic expansions in 

series of a small parameter, the ratio between the characteristic trans- 

verse dimension of the inclusion and its length. The paper is devoted 

to the construction of the principal term of the expansions mentioned on 

the basis of the integral equation of the problem. The field within the 

inclusion, in terms of which the field in the medium is expressed by using 

a known integral operator, turns out to be the main unknown here. It is 

shown that the principal terms of the asymptotic expansion of the field 

within the inclusion is represented in the form of a sum of components 

slowly varying along the rod and boundary-layer type functions localized 

in the neighbourhood of the rod ends. An equation is obtained for the 

boundary layer functions and the nature of their damping is investigated 

as they recede from the ends of the rod. The form of the slowly varying 

part of the desired asymptotic form depends on the magnitude of the 

second dimensionless parameter of the problem, the ratio between the 

physical characteristics of the inclusion and the medium. The field with 

scalar potential is investigated in detail, the results of applying the 

method to a field with a vector potential (the theory of elasticity) are 

presented in the concluding part of the paper. 

1. Formulation of the problem. A number of stationary problems in mathematical 

physics for an inhomogenous medium reduces to determing the scalar or vector potential U(Z) 

and two tensor functions of the field intensity type &(~)and flux type a(z) from the follow- 

ing system of linear differential equations (I(.z~,x~,z~) is a point of the medium): 

div u (I) = --p (I), u (x) = c (z).E (I), E (z) = VU (x) (1.1) 

Here g(z)is the density of the field sources, c(x) is the tensor of the properties of 

the medium, and convolution of the tensors in one subscript (scalar potentials) or two sub- 

scripts (vector potentials) is denoted by a dot. In problems with a scalar potential 

(stationary heat and electrical conduction, electrostatics, etc.) c(x) is a bivalent tensor. 

In the case of elasticity theory, c(m) is a quadrivalent tensor of the elastic moduli of the 

medium, here u(x)is a vector potential while the operator V in (1.1) should be replaced by 

a symmetrized gradient. 

We consider an infinite homogeneous medium with properties tensor co. in which there is 

an isolated inclusion with the properties c,, + cl. It is assumed that the inclusion is bonded 

to the medium along the boundary of an ideally and distortion-free internal metric. Let the 

domain V occupied by the inclusion have the shape of a long curvilinear rod with middle line 
r and circular transverse section of radius a(z),z~I'. Since the transverse dimension of 
the domain V is substantially less than its length, the function a(z) allows of the represen- 

tation a(z)= E Z(z), where E is a small dimensionless parameter, and Z(z) is a quantity of the 
order of the length of the rod. Later we shall assume that r is a smooth curve without 
points of selfintersection, while the function a(z) satisfies the condition 1 daldz I(( 1 
everywhere on I? with the exception, perhaps, of the neighbourhoods of the ends of the rod. 

We will transfer from system (1.1) to an equivalent integral equation for the field flux, 
the function o(x) /l, 2/ 

o(z)- 1 S(Z-~').B1.u(s')dx'=uo(x) (1.2) 
Y 

B, = B - B,, B = c-l, B. = co-’ 
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Nere skis the field in the medium in the absence of inhomogeneities but the same 
sources q(r)and conditions at infinity (external field). The kernel s(z) of the integral 
operator S in (1.2) is expressed in terms of the second derivatives of Green's function 

G(s) of a homogeneous medium CO and has the form (6(r) is the delta function) 

S (s) = c,.K (x).c~-c,,~ (z), K (5) = - W'G (s) 

(G 'CO . VG (x) == - 6 (x)) 

Henceforth we will assume that the explicit expression for the function S(x) is known. 
The integral operator S with kernel s(z) can be considered as a pseudodifferential operator 
whose symbol S*(k) (the transformation of the Fourier function S(x)) is a homogeneous 
function of zero degree in k(k’,kz,k3). It is seen from (1.2) that the field ff (x) outside the 
domain V is retored single-valuedly in the values of O(x) within V. Consequently, the field 
(J (s) within the rod can be considered as the fundamental unknown of the problem. We obtain 
the equation for this field by multiplying both sides of (1.2) by V(.r), the characteristic 
function of the domain V. The solution of such an equation exists and is unique if the 
determinant of the operator symbol ontheleft side of (1.2) det[I-S*(k).B,] does not equal 
zero for all kfl is the unit tensor) /3/. This condition is satisfied if c is the non- 
degenerate tensor detc# O,ca. 

The purpose of the paper is to construct the principal term of the expansion of the 
field O(X) in the domain V in a series in the parameter E. We will start with an investi- 
gation of the passage to the limit as e-+0 in the Eq.(1.2). 

2. Field with a scalar potential. We will consider the simplest case of a field 
with a scalar potential when the medium and the inclusion are isotropic. Here n(2) is a 
vector field roafi = c,&@, 19 = c&a, andtheoperator symbol S in (1.2) has the form 

S*@ (k) = cg (k”kfi/W - V) (2.1) 

where &fi is the Kronecker delta, and CO, c are scalar quantities. 
We will place the origin of a Cartesian system Yl? Y,, Y3 at an arbitrarypoint ZE r (Z+ 

so> s # zl; 20, ZI are coordinates of the ends of the rod), by directing the Y, axis along the 
tangent to I?. We change to dimensionless coordinates ci = u-l (z) yi (i = 1, 2, 3) In (1.2) and 
we allow the parameter E, and therefore the radius U(Z) of the rod also, to tend to zero. 
The domain V here goes over into VO, thedomain within a cylinder of unit radius with a 
generator parallel to &, and (1.2) takes the form 

o”(:,C)- s s(~-~‘).B~.u”(z,~‘)d;‘-=oo(~), 5EVo (2.2) 
T’, 

It is here taken into account that S(x) is a homogeneous function of degree -3, while 
o" (z,c) = iim o (Y) as f-t 0. Since uO is a vector constant in j, thenthesolutionof this 
equation will also be constant within the domain VO and the expression for u"(z) takes the 
form /4/ 

(JO(Z) = A (z).cr, (z), A-' = I - D.B, (2.3) 

Here 8, is the surface of a unit sphere in k-space (the k’,k”,P system of coordinates 
is conjugate to Yl> Y2i Y3). Substituting S*(k) from (2.1) here, we obtain 

where m = m(z) is the unit vector tangent to r at the point z. 
It can be expected that, far from the rod ends, the function oO((z) of the form (2.31, 

(2.4), which is constant in transverse sections of the domain V, will be the principal term 
of the expansion of the field o(x) in an asymptotic series in the parameter s. Letusconfirm 
this assumption as follows. We substitute the expression obtained for a'(z) into the left- 
hand side of (1.2) and we find the residual on the right-hand side. To compensate the 
residual a certain component U,(Z) should be added to o"(Z). If the function (Jt (I) 
tends to zero uniformly in the domain V as s-0, then so (2) actually is the principal 
term of the expansion of the field a(x) in a series in E. If the condition that ar(.r) tend 
uniformly to zero in V is violated, then the desired asymptotic form is the sum of the 
function o"(z) and the principal term of the expansion of O,(X) in a series in C. 

3. Action of the operator I- 5B, on u"(x). We substitute the function c"(z) of 
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the form (2.3), (2.4) into the left-hand side of (1.2) and integrate over the rod transverse 
section W (2). Taking into account that each point ZG v allows of a 
in the form x = z + p,.z f r,p E CII (z), we will have 

o"(z)-(SB~.u")(z)=oo(z)-~~(~,z', a).B~.a”(z’)dJJ’ 

S(X,Z’,a)= j S(x-z’-p’)dC+, a=a(z’) 
W’) 

unique representation 

The expression for the function ,??(x,z',u) can be represented in the form 

(3.1) 

(3.2) 

S(s,z',a)=(2n)'3SS*(k)exp [- ik.(r -z')]dk S e'"+'dQ,s 
OW 

(3.3) 

where s*(k) is the Fourier transform of s(r). We here substitute s*(k) from (2.1) and 
integrate first with respect to p' and then k', k2. Then in the y,,y,,y, coordinate system 
with origin at the point z' and axes directions e(r), ec2), m I respectively, the expression for 
s (x, z', a) takes the form (H(t) is the Heaviside function) 

cc 

S(Z,Z),u)=S(y,z’,u)=~ s S*(y,ka,z’,a) exp(- ik3y3)dk3 

,pcte = co [I gk3 I--I Sl@6 + Saea$ - i sign k3S1 (ma& + eamo) - 

Sorn%$ - H (a - 1 y I) Oay] (tj = ~1.4~) + y&), e =!i/l _f7 I) 

alk311n(Ipk3))Kl(aIk31), Ig\<a 

(--)n+luJk3111(ulk31)K,(lyk3j), ]y]>e' 
n=O,l, 2 

(3.4) 

(3.5) 

where I,, K, are modified Bessel functions. We examine the asymptotic form of the right side 
of (3.1) as u+O. Expanding the functions 1, and K, in a power series /5/, it can be shown 
that as a+0 

S*aB (& k3, z’, a) -t SF1 (2’) = - l/~co [Oal (2’) f 2n” (z’) my (z’)] 

But then lim 3 (y, ~',a) = s,* (z') 6 (ys) as a+0 by virtue of (3.4), and the function s (y, 
~',a) is a &sequence /6/. Therefore as u-+0 the integral 

J(z,u)= ~~(z,~‘,u).B~.o”(z’)dl” 
r 

converges to s,* (z)~B1~ao(z) uniformly on the curve I?, with the exception of the neighbourhoods 
of the ends, for any smooth function (J"(Z). Hence, and from (2.31, (2.4) it follows that as 
U-+0 the right-hand side of (3.1) converges to ~,(z),the value of the right-hand side of 
(1.2) on r* uniformly in the domain V with the exception of the neighbourhoods of the rod 
ends. 

The convergence of J(z,u) to sO*(z).B1.uO(Z) in the neighbourhood of the points z0 and 
can be non-uniform and dependent on the shape of the rod ends. 

,": the &-sequence 'S(z, z', a) 
Because of the localization 

in the neighbourhood of the diagonal z = z', to investigate the 
convergence of the integral J(z,a) in the neighbourhood of the end 20 as a-+ 0, the initial 
curvilinear rod can be replaced by a rectilinear semi-infinite rod of radius s(zo) whose 
middle line is tangent to the curve l? at the point z0 and has a common origin with I? . The 
asymptotic form of J(z,U) in the neighbourhood of the second end 2 = Zl can be considered 
similarly. 

Therefore, if a (z)is a function varying slowly on r and a(~)# 0 for z# 20, zl, then 
to analyse the asymptotic form of the right side of (3.1) as S--t 0 in the neighbourhood of 
the end zo(Zl), it iS sufficient to consider a rectilinear semi-infinite rod of constant radius 
a (ZO) (a (z~)) with middle line ro (rl), where I?I is a half-line analogous to r0 with origin at 

Zl. 
In the case of a semi-infinite cylindrical rod of constant radius IGI<a in the domain 

V and from (3.5) there follows an expression for s* (5, k3, a) in the form (we later omit the 
superscript 3 in the argument k3) 

S*@(@,h,u)= - 'jzcOIW + 2mam8 + 

(1 - T (a ( k 1)) W5 - 2mam?1 f COF (1 g 1 k) 2’ (a 1 k I), 

T(alkl)=alklKl(aIkl) 

(3.6) 

For9 (t) = t-’ (II (t) - ‘/_t) EJa8 + 12 (t) eat4 - iIl (t) (mae8 + earnb) - 
(lo(t) - 1) mamB 
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where P (tf is an analytic function whose power series expansion starts with linear terms int. 
Let s be a natural coordinate along the rod axis, SE IO, m). Substituting expression 

(2.3), (2.4) for (JO on the right-hand side of (3.1) and using (3.4) and (3.6), we obtain 

h h (y, S, a) = l/.~~B1 (O,, v - 2m%,+) [(I - T) rr”fiI (s) - (3.8) 

coB,Z+.a (- i 1 g 1 D) (TooR) {s), D == d/ds 

Here T is the integral operator with symbol T (a fk 1) which is defined by the formula 
(T(s) is the Fourier prototype af the function Z'(U 1 k 1) (3.6)) 

(To”)(s) =- 5 T (s - s’) u” (s’) ds’, (3.9) 
0 

Therefore, it follows from (3.1) and (3.7) that the function u"(s) satisfies (1.2) apart 
from the residual R. Here and henceforth it is assumed that the external field (JO(X) changes 
slightly in the rod cross sections such that a0 (z -t_ p) = u. (2). To estimate the quantity R we 

examine the asymptotic form of the function TcP as a+o. 

4. The asymptotic form Ta". Let (rO (s) be a smooth bounded function of the order of 
unity. We will estimate the result of an operator T defined by the relationship (3.9) 
acting on it by considering a to be a small quantity. We consider the following cases. 

lo. The case s > a. We select A from the conditions A >a, s - d > a and we represent 
the integral (3.9) in the form 

S-A sfA c. 

(Ti-r”) (a) ‘= ( s -+- \ + 1 ) T (s -A-‘) o’(s’) ds’ 
0 s-4 +-A 

It can be shown that the following hold for the function T(S) (3.9) 

a--A 

s T(s--_9')ds'=O(u2). T T(s--Ss')ds'~O(a~) 
0 sin 

.+A 

(4.2) 

Jk(s,a)= \a T(s-s’)(s’-ss)kds’=~I(a2), 
S'A 

k>3 (k=-=.Ft, 1,2,...) 

Jo (s, a) = 1 + 0 (a’), J, Is, a) = 0, J, (s, a) = - a2ln Q _t 
0 (a') 

It hence follows that the first and third integrals in (4.3.) are of the order of a2, and 
to estimate the second integral we substitute therein the Taylor series expansion of the 
function uG (s') in the neighbourhood of the point s 

cl' (s') = u0 (s) + Do" (s) (s' -s) + 'iz D2a” (s) (s’ - s)~ + s . ? (4.3) 

and we use the relationships (4.21. We will consequently have 

(To*“) (sf = a” (s) - l/z a21na DW’ (s) + 0 (a2), s> a (4.4 

2O. The case S-a. We select A> u and we represent the integral (3.9) in the form 

jT~“~(s)=(~~~)~(s-si)oo(s’)ds’ 
0 A 

(4.5) 

Here the second integral is of the order of a2 because of (4.21, and to estimate the 
first integral we use relationships that can be obtained by integrating by parts (k = 0, 2.2, 
. . a) 

~F(s,~)~~~~(~-s’)(s’-s)~di_-O(a’), /$>:3 (4.6) 

io = 1 -‘% (5) + 0 (a2), iI = a@,, (5) + 0 (~3) 

iz =. - u*ha (1 -t rfl, (5, a)) i- 0 (tP); 5’ = SIX 

@o@=:+- ‘f-h 
t 

J___ ( 
Zl/iiP 
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Substituting expansion (4.3) into the first integral in (4.5) and using these equalities, 
we obtain the estimate 

(T 0") (s) = so(s)-- u='(O) @o (j) + alla* (0) [aft, (5) -~cD, (%)I- f4.7) 

'is a2 In s tD'a'= (s) -!- IPa" (0) @z (5, a)1 + 0 (a2), s- a, 

c-1 

It is taken into account here that CD0 (5) is a function of boundary-layer type localised 
at the edge s = 0 as a+ 0, for which the following holds 

a" (s) Q, (5) = a" (0) @o (Q + aDa" (0) j @o (5) + 0 (a') 

5. The asymptotic form o(5) in the neighbourhood of the rod edge. We turn 
to an estimate of the magnitude of the residual R in the relationship (3.7). Using (4.4) and 
(4.7), we will have 

li~(,,s,u)~~,,co,,(e,~ - 2m~m,)0°~(0)~0(s/a) + 0(a) (5.1) 

It is seen hence and from (4.6) for ajo that as a-0, the function R tends non- 
uniformly to zero in the domain s> 0: in the neighbourhood of the edge s = 0 the residual 
is of the order of one for any a. 

To cancel the residual we add a function a1 dependent on the arguments % = @:a, % = s/a 
(compare with /7/j that varies rapidly in the neighbourhood oftheedge, to the function so(s) 
that varies slowly in scales of the order of a. Substituting the sum u"(s) + a,(%, 5) into 
the left-hand side of (1.2), we transfer to the dimensionless variables %, % and we require 
that the result tend uniformly to (JO (s) in the domain s> 0 as a-0. We hence obtain for 

o1(%,5) the equation (7f = % + %m) 

*I (EY u - ~‘).BI~uE(%‘,~‘)@‘=-- Ro(%,Q 
Eli1 0 

where P(t)has the form (3.6). This equation corresponds to the problem of a medium with a 
semi-infinite cylindrical rod of unit radius in an external field Ro (q). It follows from the 
uniqueness of the solution of il.21 that the field o(x)within the rod will tend uniformly to 
the sum (JO (s) -i- sr (5, 5) as a-+0 since the residual R corresponding to this function uniformly 
on r for the mentioned passage to the limit. 

We shall seek a solution of (5.2) that damps out at infinityinthe form a,(f,c) = U,‘(E) f 

aI1 (57 5)? by selecting the function al'(%) from the condition for satisfying (5.2) at points 
on the rod axis (% = 0) 

a~"(%) - 1 @&in -~').H1.crla(j')cEj"=-R~(0,5) (5.3) 
Ih'lSl 0 

The equation for al'(q) will here have the form (5.2) with right-hand side fi1 (q) which 
by virtue of (3.8) is determined by the relationship 

(5.4) 

The function R1 damps out at infinity more rapidly than the right-hand side of (5.3) 
(RI - %-",(D, - %-' as % 3 co), 
edge j = 0 

consequently, ~~(%~ing of a,(%,c) with distant: from the 
is determined by the function . We will examine (5.3) for 0, (5) in 

greater detail. Integrating with respect to %' and using the relationships (3.2)-(3.6) we 
obtain two independent equations for the transverse component @a," and longitudinal component 
0 17n" = a,O.?n of the vector ul' 

a&o,0 - T,8a," = - @o" (0) Qo, ae = 2 (1 + COB,) (COB,)- (5.5) 

G&n-- T&=- a," (0) Qts, Q= -(co&)-' 

where the operator Tt is defined by the relationship (5.4). 
The parameter COB, satisfies the condition - l.<c&,< 00, consequently, the domain of 

possible values of the coefficient ae and a,,, is defined by the equalities 
S<O, @I?&> 1. 

ccc < 0, a.0> 2; 
The case a, = 1 corresponds to an absolutely "rigid" rod (B, = - co-',B = 0). 

Each of th Eqs.(5.5) is equivalent tct.a Wiener-Hopf equation of the form 
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If cc<0 andm>i, then the symbol L,(k) = CL ---K,(k) of the operator La does not 

vanish on the real axis, and therefore, (5.6) has a unique solution in the class of continuous 

bounded functions /8/. The following deductions can be made from the results of a numerical 
solution of this equation (they are represented in the figure by curves 1-4, corresponding 

to values of the parameter a equal to 1.01, 1.05, 1.2, 2.0). 

lo. 

& 

If a -1 = O(1), then u(i)is analogous to @a (U, a 
" 
0.8 

function of boundary-layer type localized at the edge s -= 0 as 
a-0. 

1 20. If (x--t 1, then the rate of decrease of the function 

u(5) as ;- 00 diminishes. Such a change in the nature of the 

2 solution is associated with degeneration of the symbol L, (k) 

0.9 at the point k = 0 for a=l. 
Qualitatively the solution of (5.6) behaves in the same way 

.3 as the solution of 

4 

R (L,‘uo) (5) = ac, (5) - l/z 
2 5 4 

~.-it-~I.“(:,)d:~_c-: 

where L," is the Wiener-Hopf operator with the symbol I>,0 (k) 
a ~ (1 + @)-I. It can be shown that for a<o, a>1 

ue(Z) = 2 [l/a (a- 1) +al-lexp(- f&(cf - I)<) 

and the properties lo, 2O are evident here. 

Summarizing the results obtained, it can be asserted that for a rod with radius of cross- 

section varying slowly along the length and 1 + COB, = 0 (1) the principaltermofthe asymptotic 
form of the solution of (1.2) is represented in the form 

where the slowly varying component cr" (s) has the form (2.3), (2.4) and the functions U,(O) and 

UN1 are determined from equations of the type (5.2) and are localized as E+O in a- 

neighbourhood of the rod ends s E [O, a (O)), s if (I - a (Z), I]. We note that the structure of 

the principal term of the asymptotic form for the field a(z) can be different for a rod with 

a transverse section varying rapidly in the neighbourhood of the edges. In particular, for 

a rod in the shape of an elongated ellipsoid of revolution, the scheme in question results 

in a homogeneous equation for u,(g,L), which has only a trivial bounded solution U1' 0. 
Therefore, in this case the principal term of the asymptotic form u(m) has the form (2.3), 

(2.4) and contains no functions of boundary-layer type. 

6. A medium with a rigid rod. As caBI+ -1 the form of the slowly varying part 

of the principal term of the asymptotic form of the solution of (1.2) can differ from (2.3), 

(2.4) in the case of a finite rod since the edge effect zone encloses an ever greater 

neighbourhood of its ends as the rod "rigidity"increases (theparameter c). We will consider 

this case in greater detail. 
We start with the construction of the formal expression for the principal term of the 

desired asymptotic form. Let u(s) be a function that is constant over the rod transverse 

sections. We substitute it into (1.2) and we require that this equation be satisfied at 

points on the middle line of the rod I? 

u (s) - [ 9 (s, s’) . B, . u (s’) ds’ = 00 (s) 
0 

(6.1) 

The kernel s (s, s') is defined by a relationship analogous to (3.2). We expand the 

function S* in the representation (3.4) for s(s,s') in a formal asymptotic series in the 

parameter E. Conserving terms of order &*hE in the series for the functions I,, and K, in 

(3.5), we will have (a (s) = EZ (s)) 

S*@ (g, k, a) = ‘/.co [( 1 + ‘/..9 In EP (s’) k2) W (s’) - 
26 In d* (s’) kzma (s’) rnfi (s’) - ik (1 + ‘ha In d2 (s’) k*) x 
(ma (s’) JR + Ipnfi (s’)) - 2W] f 0 (EZ). ) y ( < a 

S* (c, k, a) = 0 (G), 1 f’ 1 > a 
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The expression for s (s,s') corresponding 

form in view of (3.4): 

where it is taken 

Substituting 

ing equations for 

sag (s, s’)= --‘I, co [6 (s- s’) + 

gab (s’) -co [S (s - s’) - ‘/2 

ma (s’) rnb (s’) + 0 (e”) 

into account that y-+0 as 

to this approximation of s* takes the following 

s21ns1$(s')d.L6(s-s')lds'lX 

&%I E 12 (s') d"6 (s - s')/ds21 x 

s* SC if I? is a smooth curve. _ 
this expression for the kernel S (s,s’) into (6.1), we arrive at the follow- 

c (s) the transverse component 0 s and axial component cm of the vector 

*(eo)a(s) + + 1 e2 n e -$ [P (s) (%)a (s)] = & (@UO)~ (s) 

*U, (s) - -& e2 In e [P (s) urn(s)] = & Uom (s) 

(6.2) 

We seek the expression for c(s)in the form 

0 (s) = u0 (s) + 1/E e21n cur (s) + . . . (6.3) 

tuting 

. Depend- 
The equation for the principal term of this expansion u"(s) is obtained by substi 

(6.3) into (6.2) and retaining components of highest order in E on the left-hand side 

ing on the magnitude of the parameter 1 + coBI = COC-' the following cases are possible 

lo. The case COC-'= 0 (1). Here 

@co(s) = &-& @Jo(s), um0(s)== & ug,n (s) (6.4) 

and the expression for u'(s)agrees with (2.31, (2.4). The connection between this function 

and the principal terms of the asymptotic form for the field u(x)within the rod is investigated 

below. 

2O. The case cot- r = 0 (&‘h e) (a rigid rod). As before, the transverse component 8~" of 

the field u0 has the form (6.4) while we obtain the equation 

for the axial component u,,," from (6.2). 

The parameter p is a quantity of the order of one, consequently, the solution of (6.5) 

will be a slowly varying function if I(s a smooth bounded function that does not equal zero 

for SE [O, II. It follows from (6.4) and (6.5) that the transverse component 8~" of the vector 
0” is of the order of one and it can be neglected compared with the axial component u,,,O which 

is of the order of (e21n &)-I. 

We will now determine the constants in the general solution of the differential Eq.(6.5). 

We first consider a rectilinear semi-infinite rod of constant radius. In this case, a natural 
condition for the determination of one of the two constants in the general solution of (6.5) 

is the boundedness of the function u'(s) at infinity. We select the second constant so that 
the residual from the right-hand side is a minimum on substituting U'(S) = u,,~(s) m(s) into the 
left-hand side of (1.2). It follows from (5.1) that in this case the principal term of the 

residual has the form 

Ra (Y, s, a) = - COB,U;~ (0) ma (s) 0~ (s/a) + 0 (eu,,,O) (f-3) 

The component of highest order in E in this expression obviously vanishes if u,,,"(O) = 0. 
The latter condition enables us to find the second constant in the general solution of (6.5). 

The components in the expression for u(r)that cancel the rest of the residual are of the 

order of (e In a)-r and can be discarded as compared with the principal term. The exception is 
the neighbourhood of the end of the rod since because of the boundary condition obtained the 

function u,'(s) vanishes as s--t 0. The form of the asymptotic form c(x)in the neighbourhood 
of the end s = 0 can be obtained by the same means as in sect.5, by adding the component 

ear (jj/a,s/a) to the function tin%) . Substituting this sum into the left-hand side of (1.2) 
and requiring that the principal term of the residual from the right-hand side be of the order 

of e21ne umO, we obtain the following equation for ~~(5, 5) 

a 

cl (5, 5) - s G'S M(q - rli) cl (5'7 5') G'= JL(E, 5) (6.7) 
15'lC1 0 
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M (q) = m.S (q)-m, P,,, (t) = m.Pft).m 

Because of the localization of the 

of the diagonal s = s' as 
kernel s (S, s') of the form (3.2) in the neighbourhood 

e->o, the structure of the residual R will have a form analogous 
to (6.6) even in the case of a curvilinear finite rod if a(~)# O,S== 0,Z. An additional 
component proportional to cr,,"(1)@, ((1- s)/a(Z)), which vanishes if a,"(Z) = 0 appears here in 
the expression for R. 

Therefore, in the case of a rigid rod (c,c- r = O(E%I E)) the principaltermofthe asymptotic 
form of the field c(z) within the domain V contains only the axial component o,(y,S) which 

has the form 

where the function o,,,=(s) satisfies the Eq.(6.5) and the boundary conditions 

cm0 (s) = 0 for s= 0,l (6.9) 

while the functions IJ~(~,) (E, 5) and UN) (E, 5) are determined from the solution of an equation 
of the form (6.7) and are real only in a-neighbourhoods of the rod ends. 

For a rod in the shape of an elongated ellipsoid of revolution (a(~)~- F~/s(Z-S)) and a 

homogeneous external field, a particular solution of (6.4) is the constant B,,,O = -2[(2 -I- 112) 
.?z In &]-%Om. It can be shown that on substituting the vector umcm into the left-hand side of 

(1.2), the residual from the right-hand side will be of the order of Gum0 for all I E 1'. 

Consequently, the principal term of the asymptotic form of the field O(I) within the rod has 

the form "I" cm and does not satisfy the conditions (6.9) (a result of the violation of the 

conditions a (S) # 0, 8 = 0, 1). 

7. An elastic medium with a curvilinear rod. In conclusion, we present the 

fundamental results of applying the proposed approach to the problem of a curvilinear rod in 

a homogeneous elastic medium. We confine ourselves to the consideration of just the slowly 

varying partofthe principal terms of the asymptotic form of an elastic field within the rod. 

The scheme elucidated above for constructing these terms is carried over to the case of the 

theory of elasticity without change. The additional technical difficulties are associated 

with the higher tensor dimensionality of the functions characterising the elastic field. 

Later it will be convenient to use the following tensor basis to represent the quadrivalent 

tensors in the problem: 

where the parentheses denote symmetrization over the corresponding subscripts, and m is the 

direction of the tangent to the rod middle line. 

The integral equation for the stress tensor o(.z) in a medium with an inclusion has the 

form (1.2). The tensor B, and the operator symbol s in (1.2) are determined in the case of 

isotropic media and inclusions by the relationships 

Bi = c-1 - co-1, c= hE, + 2pE1, co= &Es + 2poE1 
S*(k) = c,,.K*(k).co - co 

K*(k)=& [Es(n)- a&(n)], n=+ 

where ho, ~0 are the Lam& coefficients of the medium, and h, p are the same quantities for 

the inclusion. 
Repeating the construction scheme for the principal term of the asymptotic form of the 

field u(z) elucidated in Sect.6, we arrive at (6.1) in which the kernel s(s,s') has the 

following form to within terms 9 (Ei = Ei (m(s))): 

s (s, s’) = so (s/)6 (s - 5’) - 9 In E As, (s’)P (s’) g2 6 (s - s’) + (7.1) 

0 (E*) 

So (s) = c,.A,, (s).co, S, (s) = co.A, (s).cc, 

Ao (s) = 
1 

8p0(ho+ +o, Pow + 3PO)El-- (ho + PO) x 

(E:- El-Ed f 3Ea)- 4/.Msl 
1 

Ar(s) = 8PO&+ $0) 
[2poE1- (Ll + PO) x 

(_q2- 3~~--33~4+ 15&)+ 6M?s1 
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The equation into which (6;l) transfers on approximating the kernel s(s,s') by the 

right-hand side of (7.1) takes the form 

a 1 Ilohpu ,v afi 6) - s2 lnanl)., dsa d* [P(s) UhP (s)] = uy (s) 

lIo-_c~.(E1+A~.cl).~-‘, Il,==c~.A~.cl.c-‘, cl=c-co 

where the tensor components are taken in the basis of the y,, y,, y, axes with origin at the 

point s. It is here taken into account that the components of the tensors n, and n, in 

the basis mentioned are independent of s. 
Seeking the solution of (7.2) in the form of the expansion (6.31, we obtain the following 

expressions for the principal term a"(~). 
lo If c,,.c-1 = O(1), then u"(s) = no-'(s),a, (s). 
2O: If cO.c-l :_ 0 (s* Ins), then (7.2) is equivalent to the following 

It is essential that the tensor A0 defined in (7.1) be degenerate. This follows from 

the components AWG~ Ao,,,,, A03333 of this tensor being zero in the basis of the axes yl,yz, 

Y3* At the same time A, is a non-degenerate tensor. Wing the nature of the degeneration of 

Ai?, it can be shown that the principal terms of u'(s) of the expansion (6.3) has the form 

so=3 (s) = urn0 (.s)m" (s,W (s) 17.3) 

where the scalar function u,~(.s~ satisfies the equation 

(7.4) 

Here Eo,E are young's moduli of the medium and the inclusion, respectively, and ~0 is 
Poisson's ratio of the medium. The boundary conditions for this equation have the form (6.9) 
if the function l(S) does not vanish at the ends of the rod. 

Let us examine an example of a rectilinear cylindrical rod of radius a and length 21 
in a homogeneous external field of stresses CJ* If co-c-' = 0 ff) then the slowly varying part 
of the asymptotic form of the stress field within the rod is the constant a"== ll~Wi.o,, where 
the tensor II, is defined in (7.2). If co.c-" = O(E~~IE), then the function 8((s) is determined 
by (7.3) within which 

I,++-((chp)-lch(+f))-j, EL=k 
1 

and is the solution of (7.4) under the boundary conditions (6.9). An analogous expression is 
obtained for (T,,,'(S): in /9/, where a variation of the method of combinable asymptotic expansions 
was used to solve the last equation. (The same method was used in /lo/ to solve the scalar 
problem). 

The results of Sects.5 and 6 can be used to construct the principaltermoftheasymptotic 
form of the stress field in the neighbourhood of the rod ends. 

In conclusion we note that the problem of the equilibrium of an elastic medium with an 
inclusion in the form of a rigid rod has been considered by many authors. The first solutions 
of this problem for a cylindrical rod of circular cross-section and a homogeneous external 
field were obtained by using a number of simplifying hypothesesthatareusual for"engineering" 

theories of elastic systems (a survey of the results in this area can be found in /ll/, say). 
The authors of the papers mentioned proposed an equation analogous to (7.4) (for the constants 
2 and a@) and boundary conditions (6.9). However, within the framework of the engineering 
theory, an expression is not successfully determined single-valuedly for the parameter p in 
(7.4) and the absence of longitudinal stresses on the rod endfaces (conditions (6.9)) is not 
successfully given a correct foundation since the local stress concentration can generally 
be significant in the neighbourhood of the endfaces. 

Papers in which the problem under consideration was solved by perturbation methods 
(references to these papers can be found in /12/j a present another direction. A well-known 
procedure for combining the external and internal asymptotic expansions is used in these 
papers to construct the principal term of the asymptotic form of the solution of the problem 
as e-0. Such an approach permits the single-valued determination of an expression for the 
parameter p in (7.4): however, as before conditions (6.9) are treated as stresses vanishing 
at the rod endfaces. 

The method proposed in this paper enables one to examine the case of a curvilinear rod 
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with cross-sectional radius varying along the length and an arbitrary external field without 
substantial complications. The problem is here reduced successfully to the investigation of 
the field just within the rod and this field is itself represented in a natural way in the 
form of the sum of slowly and rapidly varying components along the rod length. Conditions 
of the type 16.9) essentially acquire some other meaning: they minimize the residual from 
the right-hand side of the initial integral equation on substituting the general solution 
of (7.4) fox the slowly changing components of the desired field into its left-hand side. 
These conditions generally depend on the shape of the ends and do not always allow of a simple 
physical interpretation. The initial equation can be satisfied with the necessary accuracy 
in the neighbourhood of the rod ends only by using the rapidly varying part of the solution 
for which the equations can only be solved numerically. 
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